Human Gene Module / Chromosome 16 / DNAH3

DNAH3dynein axonemal heavy chain 3

SFARI Gene Score
2
Strong Candidate Criteria 2.1
Autism Reports / Total Reports
9 / 9
Rare Variants / Common Variants
126 / 0
Aliases
DNAH3, DNAHC3-B,  DNAHC3B,  HDHC8,  HEL-36,  HSADHC3
Associated Syndromes
-
Chromosome Band
16p12.3
Associated Disorders
-
Relevance to Autism

Rare inherited loss-of-function and damaging missense variants in the DNAH3 gene were identified in ASD probands from the Simons Simplex Collection (Krumm et al., 2015) and in Chinese ASD probands (Guo et al., 2017). Transmission and De Novo Association (TADA) analysis of a cohort of 536 Chinese ASD probands and 1457 Chinese controls in Guo et al., 2017 identified the DNAH3 gene as an ASD candidate gene with a PTADA between 0.001 and 0.005 (0.00758); however, PTADA for this gene failed to reach significance (P < 0.01) following TADA analysis using a combined cohort of Chinese ASD probands and controls, as well as ASD probands and controls from the Simons Simplex Collection and the Autism Sequencing Consortium.

Molecular Function

This gene belongs to the dynein family, whose members encode large proteins that are constituents of the microtubule-associated motor protein complex. This complex is composed of dynein heavy, intermediate and light chains, which can be axonemal or cytoplasmic. This protein is an axonemal dynein heavy chain. It is involved in producing force for ciliary beating by using energy from ATP hydrolysis.

SFARI Genomic Platforms
Reports related to DNAH3 (9 Reports)
# Type Title Author, Year Autism Report Associated Disorders
1 Primary Excess of rare, inherited truncating mutations in autism Krumm N , et al. (2015) Yes -
2 Support Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder Lim ET , et al. (2017) Yes -
3 Recent Recommendation Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders Li J , et al. (2017) Yes -
4 Support Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks Ruzzo EK , et al. (2019) Yes -
5 Support Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes Feliciano P et al. (2019) Yes -
6 Support - Rodin RE et al. (2021) Yes -
7 Support - Zhou X et al. (2022) Yes -
8 Support - Cirnigliaro M et al. (2023) Yes -
9 Support - Yasser Al-Sarraj et al. (2024) Yes -
Rare Variants   (126)
Status Allele Change Residue Change Variant Type Inheritance Pattern Parental Transmission Family Type PubMed ID Author, Year
c.1497+2T>C - splice_site_variant Familial - - 28831199 Li J , et al. (2017)
c.6744+1G>A - splice_site_variant Familial - - 28831199 Li J , et al. (2017)
c.3582+8C>G - splice_region_variant De novo - - 35982159 Zhou X et al. (2022)
c.10725G>A p.Trp3575Ter stop_gained Familial - - 28831199 Li J , et al. (2017)
c.2864G>A p.Arg955Gln missense_variant Familial - - 28831199 Li J , et al. (2017)
c.4768T>C p.Ser1590Pro missense_variant Familial - - 28831199 Li J , et al. (2017)
c.5164G>C p.Val1722Leu missense_variant Familial - - 28831199 Li J , et al. (2017)
c.5281G>C p.Asp1761His missense_variant Familial - - 28831199 Li J , et al. (2017)
c.6163C>T p.Arg2055Trp missense_variant Familial - - 28831199 Li J , et al. (2017)
c.7530C>A p.Asn2510Lys missense_variant Familial - - 28831199 Li J , et al. (2017)
c.8369A>C p.Asn2790Thr missense_variant Familial - - 28831199 Li J , et al. (2017)
c.7261C>T p.Arg2421Cys missense_variant De novo - - 35982159 Zhou X et al. (2022)
c.9554T>C p.Val3185Ala missense_variant De novo - - 35982159 Zhou X et al. (2022)
c.9775G>A p.Ala3259Thr missense_variant De novo - - 35982159 Zhou X et al. (2022)
c.10769C>A p.Pro3590His missense_variant Familial - - 28831199 Li J , et al. (2017)
c.10907C>A p.Pro3636His missense_variant Familial - - 28831199 Li J , et al. (2017)
c.11018G>A p.Gly3673Asp missense_variant Familial - - 28831199 Li J , et al. (2017)
c.10487T>C p.Met3496Thr missense_variant De novo - - 35982159 Zhou X et al. (2022)
c.3267C>G p.Thr1089%3D synonymous_variant De novo - - 35982159 Zhou X et al. (2022)
c.7530C>T p.Asn2510%3D synonymous_variant De novo - - 35982159 Zhou X et al. (2022)
c.8578G>A p.Glu2860Lys missense_variant De novo - - 33432195 Rodin RE et al. (2021)
c.7786A>G p.Lys2596Glu missense_variant De novo - - 31452935 Feliciano P et al. (2019)
c.7261C>T p.Arg2421Cys missense_variant De novo - Simplex 35982159 Zhou X et al. (2022)
c.2460del p.Val821TyrfsTer21 frameshift_variant Familial - - 28831199 Li J , et al. (2017)
c.7692T>C p.Asp2564= synonymous_variant De novo - Simplex 28714951 Lim ET , et al. (2017)
c.5496C>T p.Phe1832%3D synonymous_variant De novo - Simplex 35982159 Zhou X et al. (2022)
c.1919+1G>A - splice_site_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.2595T>G p.Tyr865Ter stop_gained Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
C>G p.Glu2757Gln missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
C>G p.Glu2757Gln missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
C>T p.Arg1972Lys missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
C>T p.Arg1972Lys missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
C>T p.Gly2193Arg missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
C>T p.Gly2193Arg missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
G>A p.Ala1780Val missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
G>A p.Ala1780Val missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
G>A p.Thr1752Met missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.3442C>T p.Arg1148Ter stop_gained Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.6675C>G p.Tyr2225Ter stop_gained Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.7972C>T p.Gln2658Ter stop_gained Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.8934G>A p.Trp2978Ter stop_gained Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.8934G>A p.Trp2978Ter stop_gained Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.9135G>A p.Trp3045Ter stop_gained Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.9289_9290insT p.Lys3097IlefsTer4 frameshift_variant Familial - - 28831199 Li J , et al. (2017)
c.4210-2A>C - splice_site_variant Familial Paternal Multiplex 31398340 Ruzzo EK , et al. (2019)
c.233G>A p.Ser78Asn missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5884_5884+1del - frameshift_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.1207C>T p.Arg403Ter stop_gained Familial Paternal Multiplex 31398340 Ruzzo EK , et al. (2019)
c.883C>T p.Arg295Trp missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.2069G>A p.Arg690Gln missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.2069G>A p.Arg690Gln missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.2842A>C p.Ile948Leu missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.3148A>G p.Ile1050Val missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.3436C>G p.Pro1146Ala missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.3530C>T p.Ser1177Leu missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.3594A>C p.Glu1198Asp missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.3594A>C p.Glu1198Asp missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.3907G>A p.Asp1303Asn missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.3987G>T p.Trp1329Cys missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.4126A>G p.Asn1376Asp missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.4154C>A p.Ala1385Asp missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.4154C>A p.Ala1385Asp missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.4231G>A p.Asp1411Asn missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.4286G>C p.Gly1429Ala missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.4312A>G p.Asn1438Asp missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.4321G>A p.Glu1441Lys missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.4510C>T p.Arg1504Trp missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.4631C>T p.Ser1544Leu missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.4655A>G p.His1552Arg missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.4753C>T p.Arg1585Trp missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5005G>A p.Gly1669Ser missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5104C>T p.Pro1702Ser missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5117C>T p.Thr1706Met missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.5152A>G p.Ser1718Gly missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5201C>T p.Ala1734Val missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.5201C>T p.Ala1734Val missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5359G>A p.Glu1787Lys missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5434C>A p.Leu1812Ile missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5459C>T p.Ser1820Phe missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.5777G>A p.Arg1926Lys missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.5777G>A p.Arg1926Lys missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.6406G>A p.Asp2136Asn missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.6439G>A p.Gly2147Arg missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.6635C>G p.Ala2212Gly missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.6635C>G p.Ala2212Gly missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.6662C>T p.Ser2221Leu missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.6689G>A p.Arg2230Gln missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.6791T>A p.Val2264Asp missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.7172G>A p.Gly2391Asp missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.7339G>A p.Asp2447Asn missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.7603C>T p.Pro2535Ser missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.7604C>T p.Pro2535Leu missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.7619G>A p.Cys2540Tyr missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.7619G>A p.Cys2540Tyr missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.7739A>G p.Lys2580Arg missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.7931C>T p.Ala2644Val missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.8131G>C p.Glu2711Gln missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.8131G>C p.Glu2711Gln missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.8143G>C p.Ala2715Pro missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.8320G>A p.Gly2774Ser missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.8441G>A p.Arg2814Gln missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.9470A>G p.Asp3157Gly missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.9494C>T p.Ala3165Val missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.9637G>T p.Ala3213Ser missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.9734G>A p.Arg3245Gln missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.9950G>A p.Arg3317His missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.10322C>T p.Ala3441Val missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.10454C>T p.Pro3485Leu missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.10579G>A p.Gly3527Arg missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.10723C>G p.Pro3575Ala missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.11093G>A p.Arg3698Gln missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.11519T>C p.Leu3840Pro missense_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.11519T>C p.Leu3840Pro missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.12071A>G p.Tyr4024Cys missense_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.3442C>T p.Arg1148Ter stop_gained Familial Maternal Multiplex 37506195 Cirnigliaro M et al. (2023)
c.11943G>A p.Trp3981Ter stop_gained Familial Paternal Multiplex 37506195 Cirnigliaro M et al. (2023)
c.105del p.Ser36ValfsTer14 frameshift_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.232del p.Ser78ValfsTer10 frameshift_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.708_709del p.Leu237AlafsTer20 frameshift_variant Familial Maternal Simplex 25961944 Krumm N , et al. (2015)
c.3226del p.Ser1076HisfsTer7 frameshift_variant Familial Maternal Multiplex 31398340 Ruzzo EK , et al. (2019)
c.8113_8114del p.Gly2705AsnfsTer6 frameshift_variant Familial Paternal Simplex 25961944 Krumm N , et al. (2015)
c.104_107del p.Gly35ValfsTer14 frameshift_variant Familial Maternal Multiplex 31398340 Ruzzo EK , et al. (2019)
c.10769_10770insT p.Lys3591GlnfsTer14 frameshift_variant Familial Maternal Multiplex 31398340 Ruzzo EK , et al. (2019)
c.4057_4058del p.Lys1353ValfsTer3 frameshift_variant Familial Maternal Multiplex 37506195 Cirnigliaro M et al. (2023)
c.9427del p.Val3143SerfsTer7 frameshift_variant Familial Both parents Multiplex 38572415 Yasser Al-Sarraj et al. (2024)
c.12260_12263del p.Asn4087MetfsTer17 frameshift_variant Familial Paternal Multiplex 37506195 Cirnigliaro M et al. (2023)
Common Variants  

No common variants reported.

SFARI Gene score
2

Strong Candidate

Rare inherited loss-of-function and damaging missense variants in the DNAH3 gene were identified in ASD probands from the Simons Simplex Collection (Krumm et al., 2015) and in Chinese ASD probands (Guo et al., 2017). Transmission and De Novo Association (TADA) analysis of a cohort of 536 Chinese ASD probands and 1457 Chinese controls in Guo et al., 2017 identified the DNAH3 gene as an ASD candidate gene with a PTADA between 0.001 and 0.005 (0.00758); however, PTADA for this gene failed to reach significance (P < 0.01) following TADA analysis using a combined cohort of Chinese ASD probands and controls, as well as ASD probands and controls from the Simons Simplex Collection and the Autism Sequencing Consortium.

Score Delta: Score remained at 2

2

Strong Candidate

See all Category 2 Genes

We considered a rigorous statistical comparison between cases and controls, yielding genome-wide statistical significance, with independent replication, to be the strongest possible evidence for a gene. These criteria were relaxed slightly for category 2.

4/1/2022
3
icon
2

Decreased from 3 to 2

Description

Rare inherited loss-of-function and damaging missense variants in the DNAH3 gene were identified in ASD probands from the Simons Simplex Collection (Krumm et al., 2015) and in Chinese ASD probands (Guo et al., 2017). Transmission and De Novo Association (TADA) analysis of a cohort of 536 Chinese ASD probands and 1457 Chinese controls in Guo et al., 2017 identified the DNAH3 gene as an ASD candidate gene with a PTADA between 0.001 and 0.005 (0.00758); however, PTADA for this gene failed to reach significance (P < 0.01) following TADA analysis using a combined cohort of Chinese ASD probands and controls, as well as ASD probands and controls from the Simons Simplex Collection and the Autism Sequencing Consortium.

1/1/2021
3
icon
3

Decreased from 3 to 3

Description

Rare inherited loss-of-function and damaging missense variants in the DNAH3 gene were identified in ASD probands from the Simons Simplex Collection (Krumm et al., 2015) and in Chinese ASD probands (Guo et al., 2017). Transmission and De Novo Association (TADA) analysis of a cohort of 536 Chinese ASD probands and 1457 Chinese controls in Guo et al., 2017 identified the DNAH3 gene as an ASD candidate gene with a PTADA between 0.001 and 0.005 (0.00758); however, PTADA for this gene failed to reach significance (P < 0.01) following TADA analysis using a combined cohort of Chinese ASD probands and controls, as well as ASD probands and controls from the Simons Simplex Collection and the Autism Sequencing Consortium.

10/1/2019
4
icon
3

Decreased from 4 to 3

New Scoring Scheme
Description

Rare inherited loss-of-function and damaging missense variants in the DNAH3 gene were identified in ASD probands from the Simons Simplex Collection (Krumm et al., 2015) and in Chinese ASD probands (Guo et al., 2017). Transmission and De Novo Association (TADA) analysis of a cohort of 536 Chinese ASD probands and 1457 Chinese controls in Guo et al., 2017 identified the DNAH3 gene as an ASD candidate gene with a PTADA between 0.001 and 0.005 (0.00758); however, PTADA for this gene failed to reach significance (P < 0.01) following TADA analysis using a combined cohort of Chinese ASD probands and controls, as well as ASD probands and controls from the Simons Simplex Collection and the Autism Sequencing Consortium.

7/1/2019
4
icon
4

Decreased from 4 to 4

Description

Rare inherited loss-of-function and damaging missense variants in the DNAH3 gene were identified in ASD probands from the Simons Simplex Collection (Krumm et al., 2015) and in Chinese ASD probands (Guo et al., 2017). Transmission and De Novo Association (TADA) analysis of a cohort of 536 Chinese ASD probands and 1457 Chinese controls in Guo et al., 2017 identified the DNAH3 gene as an ASD candidate gene with a PTADA between 0.001 and 0.005 (0.00758); however, PTADA for this gene failed to reach significance (P < 0.01) following TADA analysis using a combined cohort of Chinese ASD probands and controls, as well as ASD probands and controls from the Simons Simplex Collection and the Autism Sequencing Consortium.

7/1/2017
icon
4

Increased from to 4

Description

Rare inherited loss-of-function and damaging missense variants in the DNAH3 gene were identified in ASD probands from the Simons Simplex Collection (Krumm et al., 2015) and in Chinese ASD probands (Guo et al., 2017). Transmission and De Novo Association (TADA) analysis of a cohort of 536 Chinese ASD probands and 1457 Chinese controls in Guo et al., 2017 identified the DNAH3 gene as an ASD candidate gene with a PTADA between 0.001 and 0.005 (0.00758); however, PTADA for this gene failed to reach significance (P < 0.01) following TADA analysis using a combined cohort of Chinese ASD probands and controls, as well as ASD probands and controls from the Simons Simplex Collection and the Autism Sequencing Consortium.

Krishnan Probability Score

Score 0.493425081593

Ranking 4163/25841 scored genes


[Show Scoring Methodology]
Krishnan and colleagues generated probability scores genome-wide by using a machine learning approach on a human brain-specific gene network. The method was first presented in Nat Neurosci 19, 1454-1462 (2016), and scores for more than 25,000 RefSeq genes can be accessed in column G of supplementary table 3 (see: http://www.nature.com/neuro/journal/v19/n11/extref/nn.4353-S5.xlsx). A searchable browser, with the ability to view networks of associated ASD risk genes, can be found at asd.princeton.edu.
ExAC Score

Score 9.6305794757157E-51

Ranking 18218/18225 scored genes


[Show Scoring Methodology]
The Exome Aggregation Consortium (ExAC) is a summary database of 60,706 exomes that has been widely used to estimate 'constraint' on mutation for individual genes. It was introduced by Lek et al. Nature 536, 285-291 (2016), and the ExAC browser can be found at exac.broadinstitute.org. The pLI score was developed as measure of intolerance to loss-of- function mutation. A pLI > 0.9 is generally viewed as highly constrained, and thus any loss-of- function mutations in autism in such a gene would be more likely to confer risk. For a full list of pLI scores see: ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint/fordist_cle aned_exac_nonTCGA_z_pli_rec_null_data.txt
Sanders TADA Score

Score 0.95083327661225

Ranking 18646/18665 scored genes


[Show Scoring Methodology]
The TADA score ('Transmission and De novo Association') was introduced by He et al. PLoS Genet 9(8):e1003671 (2013), and is a statistic that integrates evidence from both de novo and transmitted mutations. It forms the basis for the claim of 65 individual genes being strongly associated with autism risk at a false discovery rate of 0.1 (Sanders et al. Neuron 87, 1215-1233 (2015)). The calculated TADA score for 18,665 RefSeq genes can be found in column P of Supplementary Table 6 in the Sanders et al. paper (the column headed 'tadaFdrAscSscExomeSscAgpSmallDel'), which represents a combined analysis of exome data and small de novo deletions (see www.cell.com/cms/attachment/2038545319/2052606711/mmc7.xlsx).
Submit New Gene

Report an Error