ERBINerbb2 interacting protein
Autism Reports / Total Reports
9 / 9Rare Variants / Common Variants
6 / 0Aliases
ERBIN, ERBB2IP, HEL-S-78, LAP2Associated Syndromes
-Chromosome Band
5q12.3Associated Disorders
-Relevance to Autism
This gene, formerly known as ERBB2IP, was originally identified as an ASD candidate gene based on its enrichment in an autism-associated protein interaction module. Sequencing of post-mortem brain tissue from 25 ASD cases resulted in the identification of significant non-synonymous variants in this gene with an expected false-positive rate at 0.1, confirming the involvement of this module with autism; this finding was further validated by exome sequencing of an independent cohort of 505 ASD cases and 491 controls (Li et al., 2014). This gene was identified by TADA (transmission and de novo association) analysis of a combined dataset from the Simons Simplex Collection (SSC) and the Autism Sequencing Consortium (ASC) as a gene strongly enriched for variants likely to affect ASD risk with a false discovery rate (FDR) of <0.1 (Sanders et al., 2015); among the variants identified in this gene was one de novo loss-of-function (LoF) variant.
Molecular Function
This gene is a member of the leucine-rich repeat and PDZ domain (LAP) family that binds to the unphosphorylated form of the ERBB2 protein and regulates ERBB2 function and localization. It has also been shown to affect the Ras signaling pathway by disrupting Ras-Raf interaction.
External Links
SFARI Genomic Platforms
Reports related to ERBIN (9 Reports)
# | Type | Title | Author, Year | Autism Report | Associated Disorders |
---|---|---|---|---|---|
1 | Support | Synaptic, transcriptional and chromatin genes disrupted in autism | De Rubeis S , et al. (2014) | Yes | - |
2 | Primary | Integrated systems analysis reveals a molecular network underlying autism spectrum disorders | Li J , et al. (2015) | Yes | - |
3 | Support | Excess of rare, inherited truncating mutations in autism | Krumm N , et al. (2015) | Yes | - |
4 | Recent Recommendation | Low load for disruptive mutations in autism genes and their biased transmission | Iossifov I , et al. (2015) | Yes | - |
5 | Recent Recommendation | Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci | Sanders SJ , et al. (2015) | Yes | - |
6 | Support | Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks | Ruzzo EK , et al. (2019) | Yes | - |
7 | Support | - | Rhine CL et al. (2022) | Yes | - |
8 | Support | - | Zhou X et al. (2022) | Yes | - |
9 | Support | - | Cirnigliaro M et al. (2023) | Yes | - |
Rare Variants (6)
Status | Allele Change | Residue Change | Variant Type | Inheritance Pattern | Parental Transmission | Family Type | PubMed ID | Author, Year |
---|---|---|---|---|---|---|---|---|
c.3958C>T | p.Gln1320Ter | stop_gained | De novo | - | - | 35982159 | Zhou X et al. (2022) | |
c.821C>T | p.Ser274Leu | missense_variant | Unknown | - | Unknown | 25549968 | Li J , et al. (2015) | |
c.1307-2A>T | - | splice_site_variant | De novo | - | Simplex | 25363760 | De Rubeis S , et al. (2014) | |
c.1292C>T | p.Pro431Leu | missense_variant | De novo | - | Simplex | 25961944 | Krumm N , et al. (2015) | |
c.1461C>A | p.Tyr487Ter | stop_gained | Familial | Paternal | Multiplex | 37506195 | Cirnigliaro M et al. (2023) | |
c.1043_1044del | p.Thr348SerfsTer8 | frameshift_variant | Familial | Paternal | Multiplex | 31398340 | Ruzzo EK , et al. (2019) |
Common Variants
No common variants reported.
SFARI Gene score
Strong Candidate


This gene, formerly known as ERBB2IP, was originally identified as an ASD candidate gene based on its enrichment in an autism-associated protein interaction module. Sequencing of post-mortem brain tissue from 25 ASD cases resulted in the identification of significant non-synonymous variants in this gene with an expected false-positive rate at 0.1, confirming the involvement of this module with autism; this finding was further validated by exome sequencing of an independent cohort of 505 ASD cases and 491 controls (Li et al., 2014). This gene was identified in Iossifov et al. 2015 as a strong candidate to be an ASD risk gene based on a combination of de novo mutational evidence and the absence or very low frequency of mutations in controls (PMID 26401017). This gene was subsequently identified by TADA (transmission and de novo association) analysis of a combined dataset from the Simons Simplex Collection (SSC) and the Autism Sequencing Consortium (ASC) as a gene strongly enriched for variants likely to affect ASD risk with a false discovery rate (FDR) of <0.1 (Sanders et al., 2015); among the variants identified in this gene was one de novo loss-of-function (LoF) variant that was not present in dbSNP or ESP.
Score Delta: Score remained at 2
criteria met
See SFARI Gene'scoring criteriaWe considered a rigorous statistical comparison between cases and controls, yielding genome-wide statistical significance, with independent replication, to be the strongest possible evidence for a gene. These criteria were relaxed slightly for category 2.
10/1/2019

Score remained at 2
New Scoring Scheme
Description
This gene, formerly known as ERBB2IP, was originally identified as an ASD candidate gene based on its enrichment in an autism-associated protein interaction module. Sequencing of post-mortem brain tissue from 25 ASD cases resulted in the identification of significant non-synonymous variants in this gene with an expected false-positive rate at 0.1, confirming the involvement of this module with autism; this finding was further validated by exome sequencing of an independent cohort of 505 ASD cases and 491 controls (Li et al., 2014). This gene was identified in Iossifov et al. 2015 as a strong candidate to be an ASD risk gene based on a combination of de novo mutational evidence and the absence or very low frequency of mutations in controls (PMID 26401017). This gene was subsequently identified by TADA (transmission and de novo association) analysis of a combined dataset from the Simons Simplex Collection (SSC) and the Autism Sequencing Consortium (ASC) as a gene strongly enriched for variants likely to affect ASD risk with a false discovery rate (FDR) of <0.1 (Sanders et al., 2015); among the variants identified in this gene was one de novo loss-of-function (LoF) variant that was not present in dbSNP or ESP.
Reports Added
[New Scoring Scheme]7/1/2019

Score remained at 2
Description
This gene, formerly known as ERBB2IP, was originally identified as an ASD candidate gene based on its enrichment in an autism-associated protein interaction module. Sequencing of post-mortem brain tissue from 25 ASD cases resulted in the identification of significant non-synonymous variants in this gene with an expected false-positive rate at 0.1, confirming the involvement of this module with autism; this finding was further validated by exome sequencing of an independent cohort of 505 ASD cases and 491 controls (Li et al., 2014). This gene was identified in Iossifov et al. 2015 as a strong candidate to be an ASD risk gene based on a combination of de novo mutational evidence and the absence or very low frequency of mutations in controls (PMID 26401017). This gene was subsequently identified by TADA (transmission and de novo association) analysis of a combined dataset from the Simons Simplex Collection (SSC) and the Autism Sequencing Consortium (ASC) as a gene strongly enriched for variants likely to affect ASD risk with a false discovery rate (FDR) of <0.1 (Sanders et al., 2015); among the variants identified in this gene was one de novo loss-of-function (LoF) variant that was not present in dbSNP or ESP.
10/1/2016

Increased from to 2
Description
This gene, formerly known as ERBB2IP, was originally identified as an ASD candidate gene based on its enrichment in an autism-associated protein interaction module. Sequencing of post-mortem brain tissue from 25 ASD cases resulted in the identification of significant non-synonymous variants in this gene with an expected false-positive rate at 0.1, confirming the involvement of this module with autism; this finding was further validated by exome sequencing of an independent cohort of 505 ASD cases and 491 controls (Li et al., 2014). This gene was identified in Iossifov et al. 2015 as a strong candidate to be an ASD risk gene based on a combination of de novo mutational evidence and the absence or very low frequency of mutations in controls (PMID 26401017). This gene was subsequently identified by TADA (transmission and de novo association) analysis of a combined dataset from the Simons Simplex Collection (SSC) and the Autism Sequencing Consortium (ASC) as a gene strongly enriched for variants likely to affect ASD risk with a false discovery rate (FDR) of <0.1 (Sanders et al., 2015); among the variants identified in this gene was one de novo loss-of-function (LoF) variant that was not present in dbSNP or ESP.