Human Gene Module / Chromosome 12 / LEMD3

LEMD3LEM domain containing 3

SFARI Gene Score
2
Strong Candidate Criteria 2.1
Autism Reports / Total Reports
3 / 3
Rare Variants / Common Variants
3 / 0
Aliases
-
Associated Syndromes
-
Chromosome Band
12q14.3
Associated Disorders
-
Relevance to Autism

LEMD3 was identified as an ASD candidate gene based on having a p-value < 0.001 following DeNovoWEST analysis of de novo variants in 16,877 ASD trios from the Simons Simplex Collection, the Autism Sequencing Consortium, the MSSNG cohort, and the SPARK cohort in Zhou et al., 2022; among the de novo variants observed in ASD cases in this analysis were two damaging de novo missense variants (defined as having a REVEL score > 0.5). Subsequent gene-based meta-analysis involving de novo variant enrichment, transmission disequilibrium testing (TDT) of rare, inherited LoFs from unaffected parents to affected offspring, and comparisons of loss-of-function variants in cases vs population controls in this report found that LEMD3 exhibited an nominal enrichment of rare inherited loss-of-function variants preferentially transmitted to affected offspring compared to unaffected offspring (6:2; p = 0.02).

Molecular Function

This locus encodes a LEM domain-containing protein. The encoded protein functions to antagonize transforming growth factor-beta signaling at the inner nuclear membrane. Two transcript variants encoding different isoforms have been found for this gene. Mutations in this gene have been associated with osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis.

SFARI Genomic Platforms
Reports related to LEMD3 (3 Reports)
# Type Title Author, Year Autism Report Associated Disorders
1 Support Synaptic, transcriptional and chromatin genes disrupted in autism De Rubeis S , et al. (2014) Yes -
2 Support Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism Satterstrom FK et al. (2020) Yes -
3 Primary - Zhou X et al. (2022) Yes -
Rare Variants   (3)
Status Allele Change Residue Change Variant Type Inheritance Pattern Parental Transmission Family Type PubMed ID Author, Year
c.2494G>T p.Gly832Cys missense_variant De novo - - 35982159 Zhou X et al. (2022)
c.2510A>C p.Lys837Thr missense_variant De novo - - 25363760 De Rubeis S , et al. (2014)
c.2092C>G p.His698Asp missense_variant De novo - Simplex 31981491 Satterstrom FK et al. (2020)
Common Variants  

No common variants reported.

SFARI Gene score
2

Strong Candidate

Score Delta: Score remained at 2

2

Strong Candidate

See all Category 2 Genes

We considered a rigorous statistical comparison between cases and controls, yielding genome-wide statistical significance, with independent replication, to be the strongest possible evidence for a gene. These criteria were relaxed slightly for category 2.

10/1/2022
icon
2

Increased from to 2

Krishnan Probability Score

Score 0.49760787705479

Ranking 2358/25841 scored genes


[Show Scoring Methodology]
Krishnan and colleagues generated probability scores genome-wide by using a machine learning approach on a human brain-specific gene network. The method was first presented in Nat Neurosci 19, 1454-1462 (2016), and scores for more than 25,000 RefSeq genes can be accessed in column G of supplementary table 3 (see: http://www.nature.com/neuro/journal/v19/n11/extref/nn.4353-S5.xlsx). A searchable browser, with the ability to view networks of associated ASD risk genes, can be found at asd.princeton.edu.
ExAC Score

Score 0.99896843480724

Ranking 1075/18225 scored genes


[Show Scoring Methodology]
The Exome Aggregation Consortium (ExAC) is a summary database of 60,706 exomes that has been widely used to estimate 'constraint' on mutation for individual genes. It was introduced by Lek et al. Nature 536, 285-291 (2016), and the ExAC browser can be found at exac.broadinstitute.org. The pLI score was developed as measure of intolerance to loss-of- function mutation. A pLI > 0.9 is generally viewed as highly constrained, and thus any loss-of- function mutations in autism in such a gene would be more likely to confer risk. For a full list of pLI scores see: ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint/fordist_cle aned_exac_nonTCGA_z_pli_rec_null_data.txt
Sanders TADA Score

Score 0.76727464131526

Ranking 1741/18665 scored genes


[Show Scoring Methodology]
The TADA score ('Transmission and De novo Association') was introduced by He et al. PLoS Genet 9(8):e1003671 (2013), and is a statistic that integrates evidence from both de novo and transmitted mutations. It forms the basis for the claim of 65 individual genes being strongly associated with autism risk at a false discovery rate of 0.1 (Sanders et al. Neuron 87, 1215-1233 (2015)). The calculated TADA score for 18,665 RefSeq genes can be found in column P of Supplementary Table 6 in the Sanders et al. paper (the column headed 'tadaFdrAscSscExomeSscAgpSmallDel'), which represents a combined analysis of exome data and small de novo deletions (see www.cell.com/cms/attachment/2038545319/2052606711/mmc7.xlsx).
Zhang D Score

Score 0.53342091037978

Ranking 320/20870 scored genes


[Show Scoring Methodology]
The DAMAGES score (disease-associated mutation analysis using gene expression signatures), or D score, was developed to combine evidence from de novo loss-of- function mutation with evidence from cell-type- specific gene expression in the mouse brain (specifically translational profiles of 24 specific mouse CNS cell types isolated from 6 different brain regions). Genes with positive D scores are more likely to be associated with autism risk, with higher-confidence genes having higher D scores. This statistic was first presented by Zhang & Shen (Hum Mutat 38, 204- 215 (2017), and D scores for more than 20,000 RefSeq genes can be found in column M in supplementary table 2 from that paper.
Submit New Gene

Report an Error