Human Gene Module / Chromosome 11 / MAPK8IP1

MAPK8IP1mitogen-activated protein kinase 8 interacting protein 1

SFARI Gene Score
3
Suggestive Evidence Criteria 3.1
Autism Reports / Total Reports
4 / 4
Rare Variants / Common Variants
3 / 0
Aliases
-
Associated Syndromes
-
Chromosome Band
11p11.2
Associated Disorders
-
Relevance to Autism

A de novo missense variant in the MAPK8IP1 gene was identified in an ASD proband from the Simons Simplex Collection in Iossifov et al., 2014; functional assessment of this variant by a high throughput Massively Parallel Splicing Assay (MaPSY) in Rhine et al., 2022 demonstrated that this variant disrupted splicing, and this functional effect was further validated by RT-PCR. Additional rare de novo non-coding variation in this gene has also been observed in ASD probands (Turner et al., 2016; Yuen et al., 2017).

Molecular Function

This gene encodes a regulator of the pancreatic beta-cell function. It is highly similar to JIP-1, a mouse protein known to be a regulator of c-Jun amino-terminal kinase (Mapk8). This protein has been shown to prevent MAPK8 mediated activation of transcription factors, and to decrease IL-1 beta and MAP kinase kinase 1 (MEKK1) induced apoptosis in pancreatic beta cells. This protein also functions as a DNA-binding transactivator of the glucose transporter GLUT2. RE1-silencing transcription factor (REST) is reported to repress the expression of this gene in insulin-secreting beta cells. This gene is found to be mutated in a type 2 diabetes family, and thus is thought to be a susceptibility gene for type 2 diabetes.

SFARI Genomic Platforms
Reports related to MAPK8IP1 (4 Reports)
# Type Title Author, Year Autism Report Associated Disorders
1 Primary The contribution of de novo coding mutations to autism spectrum disorder Iossifov I et al. (2014) Yes -
2 Support Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA Turner TN et al. (2016) Yes -
3 Support Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder C Yuen RK et al. (2017) Yes -
4 Recent Recommendation - Rhine CL et al. (2022) Yes -
Rare Variants   (3)
Status Allele Change Residue Change Variant Type Inheritance Pattern Parental Transmission Family Type PubMed ID Author, Year
c.1493+88C>G - intron_variant De novo - Simplex 26749308 Turner TN et al. (2016)
c.2063+4C>T - splice_region_variant De novo - Simplex 28263302 C Yuen RK et al. (2017)
c.1993G>A p.Ala665Thr missense_variant De novo - Simplex 25363768 Iossifov I et al. (2014)
Common Variants  

No common variants reported.

SFARI Gene score
3

Suggestive Evidence

Functional assessment of ASD-associated variant

Score Delta: Score remained at 3

3

Suggestive Evidence

See all Category 3 Genes

The literature is replete with relatively small studies of candidate genes, using either common or rare variant approaches, which do not reach the criteria set out for categories 1 and 2. Genes that had two such lines of supporting evidence were placed in category 3, and those with one line of evidence were placed in category 4. Some additional lines of "accessory evidence" (indicated as "acc" in the score cards) could also boost a gene from category 4 to 3.

4/1/2022
icon
3

Increased from to 3

Description

Functional assessment of ASD-associated variant

Krishnan Probability Score

Score 0.60580900927122

Ranking 326/25841 scored genes


[Show Scoring Methodology]
Krishnan and colleagues generated probability scores genome-wide by using a machine learning approach on a human brain-specific gene network. The method was first presented in Nat Neurosci 19, 1454-1462 (2016), and scores for more than 25,000 RefSeq genes can be accessed in column G of supplementary table 3 (see: http://www.nature.com/neuro/journal/v19/n11/extref/nn.4353-S5.xlsx). A searchable browser, with the ability to view networks of associated ASD risk genes, can be found at asd.princeton.edu.
ExAC Score

Score 0.99900097319366

Ranking 1067/18225 scored genes


[Show Scoring Methodology]
The Exome Aggregation Consortium (ExAC) is a summary database of 60,706 exomes that has been widely used to estimate 'constraint' on mutation for individual genes. It was introduced by Lek et al. Nature 536, 285-291 (2016), and the ExAC browser can be found at exac.broadinstitute.org. The pLI score was developed as measure of intolerance to loss-of- function mutation. A pLI > 0.9 is generally viewed as highly constrained, and thus any loss-of- function mutations in autism in such a gene would be more likely to confer risk. For a full list of pLI scores see: ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint/fordist_cle aned_exac_nonTCGA_z_pli_rec_null_data.txt
Sanders TADA Score

Score 0.75630074824346

Ranking 1619/18665 scored genes


[Show Scoring Methodology]
The TADA score ('Transmission and De novo Association') was introduced by He et al. PLoS Genet 9(8):e1003671 (2013), and is a statistic that integrates evidence from both de novo and transmitted mutations. It forms the basis for the claim of 65 individual genes being strongly associated with autism risk at a false discovery rate of 0.1 (Sanders et al. Neuron 87, 1215-1233 (2015)). The calculated TADA score for 18,665 RefSeq genes can be found in column P of Supplementary Table 6 in the Sanders et al. paper (the column headed 'tadaFdrAscSscExomeSscAgpSmallDel'), which represents a combined analysis of exome data and small de novo deletions (see www.cell.com/cms/attachment/2038545319/2052606711/mmc7.xlsx).
Zhang D Score

Score 0.061493859340287

Ranking 6949/20870 scored genes


[Show Scoring Methodology]
The DAMAGES score (disease-associated mutation analysis using gene expression signatures), or D score, was developed to combine evidence from de novo loss-of- function mutation with evidence from cell-type- specific gene expression in the mouse brain (specifically translational profiles of 24 specific mouse CNS cell types isolated from 6 different brain regions). Genes with positive D scores are more likely to be associated with autism risk, with higher-confidence genes having higher D scores. This statistic was first presented by Zhang & Shen (Hum Mutat 38, 204- 215 (2017), and D scores for more than 20,000 RefSeq genes can be found in column M in supplementary table 2 from that paper.
Submit New Gene

Report an Error